There is growing evidence that the cells in the maculae flavae are tissue stem cells and the maculae flavae are a stem cell niche of the human vocal fold mucosa. This study investigated the metabolic activity, especially glycolysis, of the tissue stem cells in the maculae flavae of the human newborn vocal fold. Three normal human newborn vocal folds obtained from autopsy cases were investigated using immunohistochemistry. Among the three phenotypes of cells (cobblestone-like polygonal cells, vocal fold stellate cell-like cells and fibroblast-like spindle cells) in the newborn maculae flavae, a small number of cobblestone-like polygonal cells strongly expressed glucose transporter-1. All three phenotypes of cells in the newborn maculae flavae expressed glycolytic enzymes (hexokinase II, glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase A). The cells did not express phosphofructokinase-1 (rate-limiting enzyme of regular glucose metabolism pathway) but sparsely express glucose-6-phosphate dehydrogenase (rate-limiting enzyme) indicating the cells relied more on the pentose phosphate pathway. The cells' expression of lactate dehydrogenase A suggests the maculae flavae of the newborn vocal fold is likely to be an anaerobic microenvironment where cells perform anaerobic glycolysis. The present study is consistent with the hypothesis that the tissue stem cells in the maculae flavae of the newborn vocal fold seem to rely more on anaerobic glycolysis, especially by the pentose phosphate pathway, for energy supply. Already at birth, the metabolism of the tissue stem cells in the maculae flavae of the newborn vocal fold is likely to prevent the formation of toxic reactive oxygen species and is likely favorable to maintaining the stemness and undifferentiated states of the tissue stem cells in the stem cell system.
Read full abstract