Abstract

Glutamine provides carbon and nitrogen for macromolecular synthesis and participates in adenosine triphosphate (ATP) generation, anabolic metabolism, redox homeostasis, cell signaling, and cancer stem cell (CSC) metabolism. New treatment strategies targeting glutamine metabolism in cancer have emerged recently. We previously reported the magnetic resonance imaging (MRI) assessment of glutamine uptake by tumors and activated glutamine metabolism in CSC. In the present study, using MRI, we determined the correlation between glutamine uptake and the distribution of glutamine transporters, namely ASCT2 and SLC38A2 (SNAT2), glutaminase (GLS), and CSC markers, such as CD44 and CD166, in a mouse xenograft model of HT29 human colorectal cancer cells. MRI data revealed an obvious change in intensity following glutamine administration. Immunohistochemistry (IHC) results indicated that ASCT2 staining was stronger in regions that exhibited high glutamine uptake (p = 0.0079). Significant differences were found in the IHC staining intensities of SNAT2, GLS, and CSC markers in the areas of high and low glutamine uptake (p = 0.0079, p = 0.0159 and p = 0.0079, respectively). We also investigated the effect of an ASCT2 inhibitor on the uptake of glutamine using MRI. A statistically significant difference in the initial glutamine uptake was found after ASCT2 inhibitor administration. To conclude, glutamine uptake is positively correlated with the distribution of ASCT2 and certain CSC markers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call