The transcription repressor Bach2 plays a crucial role in shaping humoral immunity, but its cell-autonomous function remains elusive. Here, we reveal the mechanism by which Bach2 regulates effector cell maturation in peripheral B cells. In response to Toll-like receptor (TLR) agonists, Bach2 deficiency promotes the differentiation of follicular, but not marginal zone, B cells into effector cells, producing interleukin (IL)-6 and antibodies. This phenomenon is associated with changes in lipid metabolism, such as increases in CD36 expression, lipid influx, and fatty acid oxidation. Consistent with this, Bach2-deficient B cells exhibit elevated levels of mitochondrial oxidative stress, lipid peroxidation, and p38 activation. Mechanistically, Bach2 acts as a repressor of Cd36, and inhibition of CD36 or fatty acid oxidation reduces the differentiation of naive B cells into IL-6- and antibody-secreting cells. These results indicate Bach2 as a key metabolic checkpoint regulator crucial for maintaining a functionally quiescent state of follicular B cells.
Read full abstract