Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.