Abstract
For many animals, color change is a critical adaptive mechanism believed to carry a substantial energetic cost. Yet, no study to date has directly measured the energy expenditure associated with this process. We examined the metabolic cost of color change in octopuses by measuring oxygen consumption in samples of excised octopus skin during periods of chromatophore expansion and contraction and then modeled metabolic demand over the whole octopus as a function of octopus mass. The metabolic demand of the fully activated chromatophore system is nearly as great as an octopus’s resting metabolic rate. This high metabolic cost carries ecological and evolutionary implications, including selective pressures in octopuses that may influence the adoption of nocturnal lifestyles, the use of dens, the reduction of the chromatophore system in deep-sea species, and metabolic trade-offs associated with foraging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.