A thermoacoustic-Stirling engine that operates at 400 Hz with a working fluid of 1-MPa helium is constructed. For proper acoustic phasing in this engine’s regenerator, an acoustic power feedback path exists in the form of an annulus surrounding the regenerator. This feedback path is obtained by suspending an insulated, stainless steel sleeve containing a wire mesh regenerator, which is flanked by two heat exchangers, a short distance from one end of the larger diameter resonator. The ambient heat exchanger is a shell and tube exchanger, while the hot heater consists of nichrome ribbon wound on an aluminum silicate frame. Gedeon streaming is prevented by a diaphragm covering the end of the stainless steel sleeve adjacent to the ambient heat exchanger. A variable acoustic load provides a convenient means of testing this engine at various hot heater temperatures, while operating at different acoustic pressure amplitudes effects the acoustic power generated by the engine. [Work supported by ONR.]
Read full abstract