Oily wastewater and marine oil spills are a massive environmental and human threat. Conventional oil spill treatment methods include adsorption by absorbent materials, dispersants or adsorbents, and in situ burning. Superhydrophobic materials, as a material that can achieve oil-water separation, have great potential for application in oil spill treatment. Research on superhydrophobic oil spill treatment mainly focuses on materials such as sponges and fabrics. Although these materials can effectively perform oil-water separation or oil spill adsorption, they also have the disadvantages of complicated preparation methods and high costs. Here, we present a miniature device for oil-water separation and oil spill collection and recovery. The superhydrophobic copper mesh box can be used on its own as an oil-water separation device or in combination with a commercial polyurethane sponge as a miniature oil-absorbing device. The robust copper mesh is prepared in two steps: anodizing and impregnation. The superhydrophobic copper mesh had a high oil separation flux (32,330 L m−2 h−1) and efficiency (97%), which remained high (28,560 L m−2 h−1) and efficient (95%) after 20 cycles of separation. The combined micro oil adsorption device can adsorb different oils and fats on the water surface, and it has good reusability with oil adsorption capacity and efficiency up to 15.28 g/g and 98% and still has good oil adsorption capacity (11.54 g/g) and efficiency (94.6%) after 20 cycles of adsorption. Therefore, the prepared micro oil-absorbing device has promising application prospects in oil-water separation, oil spill cleanup, etc. Environmental ImplicationThis study demonstrates a facile electrochemical approach to prepare a miniature device for high-efficiency oil-water separation and oil spill collection and recovery. The modified copper mesh's separation flux could reach 32,330 L m−2 h−1, showing great promise in oil-water separation and oil spill cleanup.