Abstract
An automatic hole-cutting method is proposed to search donor cells between a structured Cartesian mesh and an overlapping body-fitted mesh. The main flow is simulated on the structured Cartesian mesh and the viscous flow near the solid boundary is simulated on the body-fitted mesh. Through the spatial interpolation of flux, the surface boundary information on the body-fitted mesh is transferred to the Cartesian mesh nodes near the surface. Cartesian mesh box near a body-fitted mesh cell is selected as a local inverse map. The Cartesian nodes located inside the donor cells are marked by the relative coordinate transformation, so that all Cartesian nodes can be classified and the hole boundaries are implicitly cut. This hole-cutting process for overset grid assembly is called Local Inverse Mapping (LIM) method. In the LIM method, spatial interpolation of flux is carried out synchronously with the marking of Cartesian nodes. The LIM method is combined with the in-house finite-difference solver to simulate the unsteady flow field of moving bodies. The numerical results show that the LIM method can accurately mark the Cartesian hole boundary nodes, the search efficiency of donor cells is high, and the result of spatial interpolation is accurate. The calculation time of overset grid assembly (OGA) can be less than 3% of the total simulation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.