ObjectivesLiver transplantation remains the only curative therapy for decompensated liver cirrhosis. However, it has several limitations, and not all patients can receive liver transplants. Therefore, liver regenerative therapy without liver transplantation is considered necessary. In this study, we attempted minimally invasive liver regenerative therapy by peripheral vein infusion of bone marrow-derived mesenchymal stem cells (BMSCs) cultured from a small amount of autologous bone marrow fluid and evaluated the effects of BMSCs on hepatocarcinogenesis in a mouse model. MethodsC57BL/6 male mice were injected intraperitoneally with N-nitrosodiethylamine once at 2 weeks of age, followed by carbon tetrachloride twice a week from 6 weeks of age onwards, to create a mouse model of highly oncogenic liver cirrhosis. From 10 weeks of age, mouse isogenic green fluorescent protein–positive BMSCs (1.0 × 106/body weight) were infused once every 2 weeks, for a total of 5 times, and the effects of frequent BMSC infusion on hepatocarcinogenesis were evaluated. ResultsIn the histologic evaluation, no significant differences were observed between the controls and BMSC-administered mice in terms of incidence rate, number, or average size of foci and tumors. However, significant suppression of fibrosis and liver injury was confirmed in the group that received BMSC infusions. DiscussionConsidering that BMSC infusion did not promote carcinogenesis, even in the state of highly oncogenic liver cirrhosis, autologous BMSC infusion might be a safe and effective therapy for human decompensated liver cirrhosis.
Read full abstract