Meropenem dosing in critically ill patients with septic shock and continuous renal replacement therapy (CRRT) is complex, with the recommended maintenance doses being 500 mg to 1,000 mg every 8 h (q8h) to every 12 h. This multicenter study aimed to describe the pharmacokinetics (PKs) of meropenem in this population to identify the sources of PK variability and to evaluate different dosing regimens to develop recommendations based on clinical parameters. Thirty patients with septic shock and CRRT receiving meropenem were enrolled (153 plasma samples were tested). A population PK model was developed with data from 24 patients and subsequently validated with data from 6 patients using NONMEM software (v.7.3). The final model was characterized by CL = 3.68 + 0.22 · (residual diuresis/100) and V = 33.00 · (weight/73)(2.07), where CL is total body clearance (in liters per hour), residual diuresis is the volume of residual diuresis (in milliliters per 24 h), and V is the apparent volume of distribution (in liters). CRRT intensity was not identified to be a CL modifier. Monte Carlo simulations showed that to maintain concentrations of the unbound fraction (fu ) of drug above the MIC of the bacteria for 40% of dosing interval T (referred to as 40% of the ƒ uT >MIC), a meropenem dose of 500 mg q8h as a bolus over 30 min would be sufficient regardless of the residual diuresis. If 100% of the ƒ uT >MIC was chosen as the target, oligoanuric patients would require 500 mg q8h as a bolus over 30 min for the treatment of susceptible bacteria (MIC < 2 mg/liter), while patients with preserved diuresis would require the same dose given as an infusion over 3 h. If bacteria with MICs close to the resistance breakpoint (2 to 4 mg/liter) were to be treated with meropenem, a dose of 500 mg every 6 h would be necessary: a bolus over 30 min for oligoanuric patients and an infusion over 3 h for patients with preserved diuresis. Our results suggest that residual diuresis may be an easy and inexpensive tool to help with titration of the meropenem dose and infusion time in this challenging population.
Read full abstract