Abstract Large language models (LLMs) have become increasingly capable, but their development often requires substantial computational resources. Although model merging has emerged as a cost-effective promising approach for creating new models by combining existing ones, it currently relies on human intuition and domain knowledge, limiting its potential. Here we propose an evolutionary approach that overcomes this limitation by automatically discovering effective combinations of diverse open-source models, harnessing their collective intelligence without requiring extensive additional training data or compute. Our approach operates in both parameter space and data flow space, allowing optimization beyond just the weights of the individual models. This approach even facilitates cross-domain merging, generating models such as a Japanese LLM with math reasoning capabilities. Surprisingly, our Japanese math LLM achieved state-of-the-art performance on a variety of established Japanese LLM benchmarks, even surpassing models with substantially more parameters, despite not being explicitly trained for such tasks. Furthermore, a culturally aware Japanese vision–language model generated through our approach demonstrates its effectiveness in describing Japanese culture-specific content, outperforming previous Japanese vision–language models. This work not only contributes new state-of-the-art models back to the open-source community but also introduces a new paradigm for automated model composition, paving the way for exploring alternative, efficient approaches to foundation model development.
Read full abstract