Abstract

The phase transition theory of shape memory polymers (SMPs) often involves a phenomenological assumption that the reference configuration of the newly transformed phase deviates from that of the initial phase. This distinction serves as a crucial mechanism in the manifestation of the shape memory effect. However, elucidating the precise definition of the reference configuration of the transformed phase poses a significant challenge in the formulation of the constitutive model. To tackle this challenge, a three-dimensional (3D) finite deformation constitutive model incorporating effective phase evolution for SMPs has been developed. This model merges insights from the classical viscoelastic framework with the phase transition theory. The anisotropic thermo-viscoelastic constitutive model is further developed by introducing hyperelastic fibers, which integrate the anisotropy of the fibers into a continuous thermodynamic framework through structure tensors. Implemented within the ABAQUS software via a user material (UMAT) subroutine, the proposed model has been meticulously validated against experimental data, showcasing its prowess in simulating stress-strain responses and shape memory characteristics of SMPs and their composites (SMPCs). This innovative model stands as an invaluable instrument for the design and of sophisticated SMP and SMPC structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.