Manganese(II)-vanadate(V)/organic hybrids were prepared in high purity using four different N-donor organic ligands (2,6:2',2″-terpyridine = terpy, 2,2'-bipyrimidine = bpym, o-phenanthroline = o-phen, and 4,4'-bipyridine = 4,4'-bpy), and their crystalline structures, thermal stabilities, optical properties, photocatalytic activities and electronic structures were investigated as a function of the organic ligand. Hydrothermal reactions were employed that targeted a 1:2 molar ratio of Mn(II)/V(V), yielding four hybrid solids with the compositions of Mn(terpy)V2O6·H2O (I), Mn2(bpym)V4O12·0.6H2O (II), Mn(H2O)(o-phen)V2O6 (III), and Mn(4,4'-bpy)V2O6·1.16H2O (IV). The inorganic component within these hybrid compounds, that is, [MnV2O6], forms infinite chains in I and layers in II, III, and IV. In each case, the organic ligand preferentially coordinates to the Mn(II) cations within their respective structures, either as chelating and three-coordinate (mer isomer in I) or two-coordinate (cis isomers in II and III), or as bridging and two coordinate (trans isomer in IV). The terminating ligands in I (terpy) and III (o-phen) yield nonbridged "MnV2O6" chains and layers, respectively, while the bridging ligands in II (bpym) and IV (4,4'-bpy) result in three-dimensional, pillared hybrid networks. The coordination number of the ligand, that is, two- or three-coordinate, has the predominant effect on the dimensionality of the inorganic component, while the connectivity of the combined metal-oxide/organic network is determined by the chelating versus bridging ligand coordination modes. Each hybrid compound decomposes into crystalline MnV2O6 upon heating in air with specific surface areas from ∼7 m(2)/g for III to ∼41 m(2)/g for IV, depending on the extent of structural collapse as the lattice water is removed. All hybrid compounds exhibit visible-light bandgap sizes from ∼1.7 to ∼2.0 eV, decreasing with the increased dimensionality of the [MnV2O6] network in the order of I > II ≈ III > IV. These bandgap sizes are smaller by ∼0.1-0.4 eV in comparison to related vanadate hybrids, owing to the addition of the higher-energy 3d orbital contributions from the Mn(II) cations. Each compound also exhibits temperature-dependent photocatalytic activities for hydrogen production under visible-light irradiation in 20% methanol solutions, with threshold temperatures of ∼30 °C for III, ∼36 °C for I, and ∼40 °C for II, IV, and V4O10(o-phen)2. Hydrogen production rates are ∼142 μmol H2 g(-1)·h(-1), ∼673 μmol H2 g(-1)·h(-1), ∼91 μmol H2 g(-1)·h(-1), and ∼218 μmol H2 g(-1)·h(-1) at 40 °C, for I, II, III, and IV, respectively, increasing with the oxide/organic network connectivity. In contrast, the related V4O10(o-phen)2 exhibits a much lower photocatalytic rate of ∼36 H2 g(-1)·h(-1). Electronic structure calculations based on density-functional theory methods show that the valence band edges are primarily derived from the half-filled Mn 3d(5) orbitals in each, while the conduction band edges are primarily comprised of contributions from the empty V 3d(0) orbitals in I and II and from ligand π* orbitals in III. Thus, the coordinating organic ligands are shown to significantly affect the local and extended structural features, which has elucidated the underlying relationships to their photocatalytic activities, visible-light bandgap sizes, electronic structures, and thermal stabilities.
Read full abstract