Abstract

A new series of nonoxido vanadium(IV) compounds [VL2] (L = L(1)-L(3)) (1-3) have been synthesized using dithiocarbazate-based tridentate Schiff-base ligands H2L(1)-H2L(3), containing an appended phenol ring with a tert-butyl substitution at the 2-position. The compounds are characterized by X-ray diffraction analysis (1, 3), IR, UV-vis, EPR spectroscopy, and electrochemical methods. These are nonoxido V(IV) complexes that reveal a rare distorted trigonal prismatic arrangement around the "bare" vanadium centers. Concerning the ligand isomerism, the structure of 1 and 3 can be described as intermediate between mer and sym-fac isomers. DFT methods were used to predict the geometry, g and (51)V A tensors, electronic structure, and electronic absorption spectrum of compounds 1-3. Hyperfine coupling constants measured in the EPR spectra can be reproduced satisfactorily at the level of theory PBE0/VTZ, whereas the wavelength and intensity of the absorptions in the UV-vis spectra at the level CAM-B3LYP/gen, where "gen" is a general basis set obtained using 6-31+g(d) for S and 6-31g for all the other elements. The results suggest that the electronic structure of 1-3 can be described in terms of a mixing among V-dxy, V-dxz, and V-dyz orbitals in the singly occupied molecular orbital (SOMO), which causes a significant lowering of the absolute value of the (51)V hyperfine coupling constant along the x-axis. The cyclic voltammograms of these compounds in dichloroethane solution display three one-electron processes, two in the cathodic and one in the anodic potential range. Process A (E1/2 = +1.06 V) is due to the quasi-reversible V(IV/V) oxidation while process B at E1/2 = -0.085 V is due to the quasi-reversible V(IV/III) reduction, and the third one (process C) at a more negative potential E1/2 = -1.66 V is due to a ligand centered reduction, all potentials being measured vs Ag/AgCl reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.