Abstract

The electroreduction of CO2 to valuable fuels or high-value chemicals by using sustainable electric energy provides a promising strategy for solving environmental problems dominated by the greenhouse effect. Copper-based materials are the only catalysts that can convert CO2 into multicarbon products, but they are plagued by high potential, low selectivity, and poor stability. The key factors to optimize the conversion of CO2 into multicarbon products are to improve the adsorption capacity of intermediates on the catalyst surface, accelerate the hydrogenation step, and improve the C-C coupling efficiency. Herein, we successfully doped Lewis acid Mg into Cu-based materials using a simple liquid-phase chemical method. In situ Raman and FT-IR tracking show that the Mg site enhances the surface coverage of the *CO intermediate, simultaneously promoting water dissociation. Under an industrial current density of 0.7 A cm-2, the FEC2+ reaches 73.9 ± 3.48% with remarkable stability. Density functional theory studies show that doping the Lewis acid Mg site increases the coverage of *CO and accelerates the splitting of water, thus promoting the C-C coupling efficiency, reducing the reaction energy barrier, and greatly improving the selectivity of C2+ products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.