Quantiles are fundamental statistics in various data science tasks, but costly to compute, e.g., by loading the entire data in memory for ranking. With limited memory space, prevalent in end devices or databases with heavy loads, it needs to scan the data in multiple passes. The idea is to gradually shrink the range of the queried quantile till it is small enough to fit in memory for ranking the result. Existing methods use deterministic sketches to determine the exact range of quantile, known as deterministic filter, which could be inefficient in range shrinking. In this study, we propose to shrink the ranges more aggressively, using randomized summaries such as KLL sketch. That is, with a high probability the quantile lies in a smaller range, namely probabilistic filter, determined by the randomized sketch. Specifically, we estimate the expected passes for determining the exact quantiles with probabilistic filters, and select a proper probability that can minimize the expected passes. Analyses show that our exact quantile determination method can terminate in P passes with 1-δ confidence, storing O(N 1/P logP-1/2P (1/δ)) items, close to the lower bound Ømega(N1/P) for a fixed δ. The approach has been deployed as a function in an LSM-tree based time-series database Apache IoTDB. Remarkably, the randomized sketches can be pre-computed for the immutable SSTables in LSM-tree. Moreover, multiple quantile queries could share the data passes for probabilistic filters in range estimation. Extensive experiments on real and synthetic datasets demonstrate the superiority of our proposal compared to the existing methods with deterministic filters. On average, our method takes 0.48 fewer passes and 18% of the time compared with the state-of-the-art deterministic sketch (GK sketch).