AimsEpidermal growth factor receptor (EGFR) has been documented in many malignancies as participating in the progression of cancer cells. Here, we present a novel EGFR tyrosine kinase inhibitor, ZZC4, and examine its effect on cancer cell proliferation, migration, and tumor-bearing xenograft models. Main methodsThe antiproliferative effect of ZZC4 was assessed in vitro by MTT assay, colony formation, and wound healing assay and in vivo with tumor-bearing xenograft nude mice. Further, Western blotting analysis and computational network pharmacology were used to explore and understand the mechanism of ZZC4. Key findingsThe results showed that ZZC4 potently inhibited the proliferation of lung, breast, and melanoma cells, and was more sensitive to lung cancer cells HCC827, H1975, and breast cancer cell T47D. In vitro findings were corroborated in vivo as results showed the suppressive effect of ZZC4 on HCC827 and H1975 tumor growth. Western blotting analysis confirmed that ZZC4 is an effective inhibitor of the EGFR pathways as it down-regulated p-EGFR, p-Akt, and p-MAPK. Computational molecular docking confirmed the strong binding affinity between ZZC4 and EGFR. Moreover, network pharmacology suggested that ZZC4 might play a suppressive role in the progression of malignancies with EGFR/PI-3K/Akt axis dysregulation or in cancer-related drug resistance. SignificanceOur study showed that ZZC4 is an anticancer drug candidate.
Read full abstract