:The overall objective of this study was to compare the efficacy of medium-chain fatty acids (MCFA) to other common fat sources to minimize the risk of porcine epidemic diarrhea virus (PEDV) cross-contamination in a pig bioassay. Treatments were feed with mitigants inoculated with PEDV after application and were: 1) positive control with no chemical treatment; 2) 0.325% commercially available formaldehyde-based product; 3) 1% blend of 1:1:1 caproic (C6), caprylic (C8), and capric acids (C10) and applied with an aerosolizing nozzle; 4) treatment 3 applied directly into the mixer without an aerosolizing nozzle; 5) 0.66% caproic acid; 6) 0.66% caprylic acid; 7) 0.66% capric acid; 8) 0.66% lauric acid; 9) 1% blend of 1:1 capric and lauric acids; 10) 0.3% commercially available dry C12 product; 11) 1% canola oil; 12) 1% choice white grease; 13) 2% coconut oil; 14) 1% coconut oil; 15) 2% palm kernel oil; 16) 1% palm kernel oil; 17) 1% soy oil and four analysis days (0, 1, 3, and 7 post inoculation) as well as 1 treatment of PEDV-negative feed without chemical treatment. There was a treatment × day interaction (P < 0.002) for detectable PEDV RNA. The magnitude of the increase in Ct value from d 0 to 7 was dependent upon the individual treatments. Feed treated with individual MCFA, 1% MCFA blend, or commercial-based formaldehyde had fewer (P < 0.05) detectable viral particles than all other treatments. Commercial-based formaldehyde, 1% MCFA, 0.66% caproic, 0.66% caprylic, and 0.66% capric acids had no evidence of infectivity 10-d old pig bioassay, while there was no evidence the C12 commercial product or longer chain fat sources inhibited PEDV infectivity. Interestingly, pigs given the coconut oil source with the highest composition of caprylic and capric only showed signs of infectivity on the last day of bioassay. These data suggest some MCFA have potential for reducing post feed manufacture PEDV contamination.
Read full abstract