The Mediterranean region has long been identified as a climate change hotspot. However, within the Mediterranean, there are smaller sub-areas that exhibit a higher risk of climate change and extremes. Previous research has often focused on indices based on mean climate values, yet extremes are typically more impactful on humans and ecosystems. This study aims to identify the most vulnerable sub-areas of the Mediterranean as climate change hotspots using two indices: the newly introduced Mediterranean Hotspot Index (MED-HOT) and the well-defined Regional Climate Change Index (RCCI). The MED-HOT focuses on extreme high maximum and minimum temperatures, rainfall, and drought, while RCCI assesses changes in mean climate conditions. By combining these indices, we provide an identification of Mediterranean hotspots, capturing both mean climate shifts and extremes. The spatiotemporal variation of both indices across the Mediterranean region is presented and the 20 subregions are categorized into distinct groups. The results reveal that the southeastern Mediterranean is at high risk according to both indices. Additionally, southern Italy is identified as high risk due to changes in mean climate (RCCI), while the northern part is at risk due to extreme events (MED-HOT). The Iberian Peninsula and Greece are also highlighted as vulnerable areas requiring extra attention.
Read full abstract