The refraction prediction error (PE) for infants with intraocular lens (IOL) implantation is large, possibly related to an effective lens position (ELP) that is different than in adult eyes. If these eyes still have nonadult ELPs as they age, this could result in persistently large PE. We aimed to determine whether ELP or biometry at age 10½ years correlated with PE in children enrolled in the Infant Aphakia Treatment Study (IATS). We compared the measured refraction of eyes randomized to primary IOL implantation to the "predicted refraction" calculated by the Holladay 1 formula, based on biometry at age 10½ years. Eyes with incomplete data or IOL exchange were excluded. The PE (predicted - measured refraction) and absolute PE were calculated. Measured anterior chamber depth (ACD) was used to assess the effect of ELP on PE. Multiple regression analysis was performed on absolute PE versus axial length, corneal power, rate of refractive growth, refractive error, and best-corrected visual acuity. Forty-three eyes were included. The PE was 0.63 ± 1.68 D; median absolute PE, 0.85 D (IQR, 1.83 D). The median absolute PE was greater when the measured ACD was used to calculate predicted refraction instead of the standard A-constant (1.88 D [IQR, 1.72] D vs 0.85 D [IQR, 1.83], resp. [P = 0.03]). Absolute PE was not significantly correlated with any other parameter. Variations in ELP did not contribute significantly to PE 10 years after infant cataract surgery.
Read full abstract