Abstract
To evaluate formulas for intraocular lens (IOL) calculation in silicone oil (SO)-filled eyes. Retrospective, consecutive case series. We conducted our study at the Department of Ophthalmology, Goethe University, Frankfurt, Germany, and included SO-filled eyes that received SO removal combined with phacoemulsification and IOL implantation. Preoperative assessments included biometry (IOLMaster 700; Carl Zeiss Meditec). To evaluate the measurements, we compared the mean prediction error, and mean and median absolute prediction error of 8 different formulas. A total of 90 eyes matched our inclusion criteria. The median absolute error was lowest in the Barrett Universal II formula (0.43 diopters [D] ± 0.75) followed by Kane (0.44 D ± 0.75), Hill-radial basis function (0.47 D ± 0.74), Holladay II (0.47 D ± 0.77), Sanders Retzlaff Kraff/theoretical (0.51 D ± 0.74), Holladay I (0.51 D ± 0.76), and Haigis and Hoffer Q (0.52 D ± 0.74 each). Regarding eyes within ±0.5 D Barrett Universal II (57.8%, 52 eyes) performed best, again followed by Kane (56.7%, 51 eyes) and Hill-radial basis function (54.4%, 49 eyes). Using modern formulas for IOL calculation in oil-filled eyes improves predictability but still not as good as in unoperated eyes. This issue is created by the change in refractive index due to the SO fill and therefore a lower precision of axial length measurement and effective lens position prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.