Al-Si cast alloys are accompanied by different defects and microstructural heterogeneities like porosity, varying secondary dendrite arm spacings (SDAS) and multiple appearances of the eutectic. These issues are well known but technically difficult to prevent for the industry. To improve the light weight performance of cast aluminum alloys the present work deals with influences on crack initiation and propagation mechanisms of such heterogeneities in the high-cycle-fatigue (HCF) and very-high-cycle-fatigue (VHCF) regime for the two hypo-eutectic cast aluminum alloys AlSi8Cu3 (in-series sand castings) and AlSi7Mg0.3 (laboratory gravity die castings). Furthermore, the occurrence of facet-regions and their role in early and late state of fatigue damage evolution is discussed by showing results from modified Kitagawa-Takahashi analysis and ex-situ computed tomography investigation during intermitted HCF experiments. In the early HCF regime crack initiation starts at multiple pores. Due to coalescence of these defects, shear-stress-controlled crack propagation along slip bands leads to the occurrence of facets. In the VHCF regime, porosity provides strong scattering of the number of cycles to failure. A reduction in SDAS increases the fatigue strength significantly. However, in absence of porosity fatigue crack initiation and propagation is controlled by shear stresses on facet-like slip-planes. Additionally, the barrier role against dislocation movement of eutectic regions can be shown by means of these specimens.
Read full abstract