Abstract

This study investigates the low-cycle fatigue (LCF) behavior of the high-strength steel S550 (commonly used in ship and floating structures) under different strain amplitudes with different strain ratios at a room temperature. The test results characterize the cyclic stress-strain relationship, the mean stress relaxation behavior and the cyclic plasticity parameters of S550 steels. The scanning electron microscopy (SEM) examinations on the failure surface reveal the fatigue crack initiation and growth mechanism. Based on the experimental results, this study presents two enhanced approaches to estimate the low-cycle fatigue life of S550 steels. The energy-based approach modifies the original Smith-Watson-Topper model using the applied energy calculated in the first cycle to enhance the accuracy and facilitate engineering implementations. The damage mechanics-based approach calibrates the material parameters from the measured total fatigue life by combining the fatigue crack initiation model and the damage growth model. The computed fatigue life using the calibrated material parameters demonstrates a close agreement with the measured fatigue life in the experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call