Abstract

A novel curved thin-walled blade simulator (CTWBS) specimens was used to investigate low cycle fatigue (LCF) behavior and crack initiation mechanism nearby film cooling holes (FCHs) in Ni-based single crystal superalloy. LCF tests were conducted under two loading stress levels at 700 °C and 1000 °C. Experimental results demonstrated that LCF lifetime reduced as the fatigue load increased at both temperatures. Crack modes were characterized on macroscopic fracture paths, and the analysis of fatigue crack early propagation revealed its microscopic mechanism. The fracture morphology and microstructure evolution also showed temperature dependence, and oxidation played a role at high temperature. The finite element calculation was based on the crystal plasticity theory considering the back stress and slip damage. The resolved shear stress (RSS) distribution law under two temperatures led to the identification of the octahedral slip system activation type respectively. In addition, the resulting fatigue damage increased in direct proportion to the slip systems activated numbers locally surrounding the FCH. The damage distribution around the FCH was in good agreement with the experimental observation. Finally, the temperature dependence of LCF crack initiation mechanism was discussed from three perspectives: crack nucleation around the FCHs, microstructure evolution and dislocation motion near crack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call