Rice is a major dietary element for about two billion people worldwide and it faces numerous biotic and abiotic stress for its cultivation. Rice blast disease caused by Magnaporthe oryzae reduce up to 30 % rice yield. Overuse of synthetic chemicals raises concerns about health and environment; so, there is an urgent need to explore innovative sustainable strategies for crop productivity. The main aim of this study is to explore the impact of bacterial volatiles (BVCs) on seedling growth and defense mechanisms of rice under in-vitro condition. On the basis of plant growth promoting properties, six bacterial strains were selected out of ninety-one isolated strains for this study; Pantoea dispersa BHUJPVR01, Enterobacter cloacae BHUJPVR02, Enterobacter sp. BHUJPVR12, Priestia aryabhattai BHUJPVR13, Pseudomonas sp. BHUJPVWRO5 and Staphylococcus sp. BHUJPVWLE7. Through the emission of bacterial volatiles compounds (BVCs), Enterobacter sp., P. dispersa and P. aryabhattai significantly reduces the growth of rice blast fungus Magnaporthe oryzae by 69.20 %, 66.15 % and 62.31 % respectively. Treatment of rice seedlings with BVCs exhibited significant enhancement in defence enzyme levels, including guaiacol peroxidase, polyphenol oxidase, total polyphenols, and total flavonoids by a maximum of up to 24 %, 48 %, 116 % and 80 %, respectively. Furthermore, BVCs effectively promote shoot height, root height, and root counts of rice. All BVCs treated plant showed a significant increase in shoot height. P. dispersa treated plants showed the highest increase of 60 % shoot and 110 % root length, respectively. Root counts increased up to 30% in plants treated with E. cloacae and Staphylococcus sp. The BVCs can be used as a sustainable approach for enhancing plant growth attributes, productivity and defence mechanism of rice plant under biotic and abiotic stresses.
Read full abstract