Unlike crystals, glasses age or devitrify over time, reflecting their nonequilibrium nature. This lack of stability is a serious issue in many industrial applications. Here, we show by numerical simulations that the devitrification of quasi-hard-sphere glasses is prevented by suppressing volume-fraction inhomogeneities. A monodisperse glass known to devitrify with "avalanchelike" intermittent dynamics is subjected to small iterative adjustments to particle sizes to make the local volume fractions spatially uniform. We find that this entirely prevents structural relaxation and devitrification over aging time scales, even in the presence of crystallites. There is a dramatic homogenization in the number of load-bearing nearest neighbors each particle has, indicating that ultrastable glasses may be formed via "mechanical homogenization." Our finding provides a physical principle for glass stabilization and opens a novel route to the formation of mechanically stabilized glasses.
Read full abstract