The experimental work reported here is devoted to the electrical study of two atmospheric pressure dielectric barrier discharge (DBD) reactors operating at high gas flow, conceived for surface treatment applications in spatial afterglow conditions. Both reactors are of coaxial geometry with the dielectric covering the active electrode, and are driven by a power generator delivering quasi-sinusoidal voltage waveforms in the 100–160 kHz range. The influence of the gas flow value and of the input power on the electrical operation of these systems is investigated. The comparative study performed here, by means of electrical measurements, reveals the influence of parameters such as geometrical dimensions and dielectric material used on the operation of the DBD. Power factor measurements are used to quantify the reactors' electrical performance. Optical diagnostics and kinetic modelling reveal a high chemical activity of the systems appropriate for the treatment of surfaces at atmospheric pressure.
Read full abstract