AbstractThe Flexible Array of Radars and Mesonets (FARM) Facility is an extensive mobile/quickly deployable (MQD) multiple-Doppler radar and in situ instrumentation network. The FARM includes four radars: two 3-cm dual polarization, dual frequency (DPDF), Doppler on Wheels (DOW6/DOW7), the Rapid-Scan DOW (RSDOW), and a quickly deployable (QD) DPDF 5-cm C band on Wheels (COW). The FARM includes three mobile mesonet (MM) vehicles with 3.5-m masts, an array of rugged QD weather stations (PODNET), QD weather stations deployed on infrastructure such as light/power poles (POLENET), four disdrometers, six MQD upper-air sounding systems and a Mobile Operations and Repair Center (MORC). The FARM serves a wide variety of research/educational uses. Components have deployed to >30 projects during 1995–2020 in the United States, Europe, and South America, obtaining pioneering observations of a myriad of small spatial- and temporal-scale phenomena including tornadoes, hurricanes, lake-effect snow storms, aircraft-affecting turbulence, convection initiation, microbursts, intense precipitation, boundary layer structures and evolution, airborne hazardous substances, coastal storms, wildfires and wildfire suppression efforts, weather modification effects, and mountain/alpine winds and precipitation. The radars and other FARM systems support innovative educational efforts, deploying >40 times to universities/colleges, providing hands-on access to cutting-edge instrumentation for their students. The FARM provides integrated multiple radar, mesonet, sounding, and related capabilities enabling diverse and robust coordinated sampling of three-dimensional vector winds, precipitation, and thermodynamics increasingly central to a wide range of mesoscale research. Planned innovations include S-band on Wheels Network (SOWNET) and Bistatic Adaptable Radar Network (BARN), offering more qualitative improvements to the field project observational paradigm, providing broad, flexible, and inexpensive 10-cm radar coverage and vector wind field measurements.
Read full abstract