This paper investigates the inverse problem of determining a heat source in the parabolic heat equation using the usual conditions of the direct problem and a supplementary condition, called an overdetermination. In this problem, if the heat source is taken to be space-dependent only, then the overdetermination is the temperature measurement at a given single instant, whilst if the heat source is time-dependent only, then the overdetermination is the transient temperature measurement recorded by a single thermocouple installed in the interior of the heat conductor. These measurements ensure that the inverse problem has a unique solution, but this solution is unstable, hence the problem is ill-posed. This instability is overcome using the Tikhonov regularization method with the discrepancy principle or the L-curve criterion for the choice of the regularization parameter. The boundary-element method (BEM) is developed for solving numerically the inverse problem and numerical results for some benchmark test examples are obtained and discussed
Read full abstract