Abstract
This work presents a demonstration of the applicability and efficacy of an experimental system capable of noninvasively and nondestructively scanning the transient surface temperature of pulsed microelectronic devices with submicron spatial and sub-microsecond temporal resolutions. The article describes the features of the experimental setup, provides details of the calibration process used to map the changes in the measured surface reflectivity to absolute temperature values, and explains the data acquisition procedure used to measure the transient temperature over a given active region. This thermoreflectance thermometry system is shown to be particularly suited for directly measuring the surface temperature field of devices undergoing the fast transients that are typical of next generation microelectronic devices. To illustrate the experimental approach, both quasisteady and transient temperature measurement results are presented for standard MOSFET devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components and Packaging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.