The mass distribution of ions influences separations in ion mobility spectrometry-mass spectrometry (IMS-MS). Herein, we introduce a method to induce mass distribution shifts for various analytes using hydrogen-deuterium exchange (HDX) immediately prior to ionization using a dual syringe approach. By replacing labile hydrogens on analytes with deuteriums, we were able to differentiate isomers using separations of isotopologues. For each analyte studied, every possible level of deuteration (from undeuterated to fully deuterated) was generated and then separated using cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS). The information gained from such separations (relative arrival times; tRel. values) was found to be orthogonal to conventional IMS-MS separations. Additionally, the observed shifts were linearly additive with increasing deuteration, suggesting that this methodology could be extended to analytes with a larger number of labile hydrogens. For one isomer pair, as few as two deuteriums were able to produce a large enough mass distribution shift to differentiate isomers. In another experiment, we found that the mass distribution shift was large enough to overcome the reduced mass contribution, resulting in a "flipped" arrival time where the heavier deuterated isotopologue arrived before the lighter one. In this work, we present a proof-of-concept demonstration that mass-distribution-based shifts, tRel. values, could potentially act as an added dimension to characterize molecules in IMS-MS. We anticipate, along with future work in this area, that mass-distribution-based shifts could enable the identification of unknown molecules through a database-driven approach in an analogous fashion to collision cross section (CCS) measurements.