Abstract

The structural diversity of phospholipids plays a critical role in cellular membrane dynamics, energy storage, and cellular signaling. Despite its importance, the extent of this diversity has only recently come into focus, largely owing to advances in separation science and mass spectrometry methodology and instrumentation. Characterization of glycerophospholipid (GP) isomers differing only in their acyl chain configurations and locations of carbon-carbon double bonds (C═C) remains challenging due to the need for both effective separation of isomers and advanced tandem mass spectrometry (MS/MS) technologies capable of double-bond localization. Drift tube ion mobility spectrometry (DTIMS) coupled with MS can provide both fast separation and accurate determination of collision cross section (CCS) of molecules but typically lacks the resolving power needed to separate phospholipid isomers. Ultraviolet photodissociation (UVPD) can provide unambiguous double-bond localization but is challenging to implement on the timescales of modern commercial drift tube time-of-flight mass spectrometers. Here, we present a novel method for coupling DTIMS with a UVPD-enabled Orbitrap mass spectrometer using absorption mode Fourier transform multiplexing that affords simultaneous localization of double bonds and accurate CCS measurements even when isomers cannot be fully resolved in the mobility dimension. This method is demonstrated on two- and three-component mixtures and shown to provide CCS measurements that differ from those obtained by individual analysis of each component by less than 1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.