ABSTRACTCarbon monoxide (CO) emitted from roasted coffee is a potential occupational respiratory exposure hazard to workers within the coffee industry. The current study objective was to estimate CO emission factors from commercially available roasted whole bean and ground coffee measured in loose form, not packaged, and to assess the utility of CO monitoring in nonventilated storage spaces such as within coffee roasting and packaging facilities, transport vessels, and cafés. Determinants affecting CO emissions from coffee were investigated, including form (whole bean vs. ground), roast level (light, medium, medium-dark, dark), and age (time since the package was opened). CO emission factors were estimated for roasted coffee samples from a variety of manufacturers purchased from local grocery stores and online. Emission tests were performed on 36 brands of coffee, some with more than one sample per brand and with various roast levels. Decaying source equations or smoothing functions were fitted to the CO concentration measurements. Maximum observed emission factors at the peak of the predicted concentration curve were adjusted by the time required to reach the maximum CO concentration and reported as emission factors (EFbuildup). Ground coffee had a significantly increased EFbuildup (P < 0.0001) compared with whole bean. Roast level did not significantly affect emissions for whole bean (P = 0.72) but did for ground (P < 0.001) coffee. For ground coffee, medium-dark and dark roasts had significantly higher emissions than medium and light roasts. Worst-case emission factors from commercially available whole bean and ground coffee measured in loose form, not packaged, showed that roasted coffee can rapidly emit CO. CO concentrations should be monitored in storage spaces in service and manufacturing facilities as well as transport vessels to ensure exposures do not exceed occupational exposure limits. Storage spaces may need to be ventilated to control CO concentrations to safe levels.Implications: Emission rates of carbon monoxide (CO) from roasted coffee showed that unventilated or underventilated storage spaces should be monitored and ventilated, if necessary, to control CO concentrations to safe levels.