Abstract

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI), launched 13 October 2017, has been measuring carbon monoxide (CO) concentrations in the Earth's atmosphere since early November 2017. In the first measurements, TROPOMI was able to measure CO concentrations of the high-pollution event in India of November 2017. In this paper, we studied the extent of the pollution in India, comparing the TROPOMI CO with modeled data from the Weather Research and Forecasting model (WRF) to identify the most important sources contributing to the high pollution, both at ground level and in the total column. We investigated the period 11–19 November 2017. We found that residential and commercial combustion was a much more important source of CO pollution than the post-monsoon crop burning during this period, which is in contrast to what media suggested and some studies on aerosol emissions found. Also, the high pollution was not limited to Delhi and its direct neighborhood but the accumulation of pollution extended over the whole Indo-Gangetic Plain (IGP) due to the unfavorable weather conditions in combination with extensive emissions. From the TROPOMI data and WRF simulations, we observed a buildup of CO during 11–14 November and a decline in CO after 15 November. The meteorological conditions, characterized by low wind speeds and shallow atmospheric boundary layers, were most likely the primary explanation for the temporal accumulation and subsequent dispersion of regionally emitted CO in the atmosphere. This emphasizes the important role of atmospheric dynamics in determining the air quality conditions at ground level and in the total column. Due to its rapidly growing population and economy, India is expected to encounter similar pollution events more often in future post-monsoon and winter seasons unless significant policy measures are taken to reduce residential and commercial emissions.

Highlights

  • During November 2017, India encountered an extreme pollution episode

  • India only took its first steps to improve the air quality in December 2017 by implementing the National Clean Air Program (NCAP), i.e., after the high-pollution event studied in this paper

  • TROPOspheric Monitoring Instrument (TROPOMI) captured the spatial pattern of the pollution, covering Delhi but rather the whole Indo-Gangetic Plain (IGP)

Read more

Summary

Introduction

Various ground-level measurement stations reported Air Quality Index (AQI; http://aqicn.org/, last access: 5 November 2018) values of 999, i.e., far above the standard scale that is limited to 500. These high AQIs were caused by high concentrations of several pollutants, but most importantly particulate matter (PM10 and PM2.5), with reported values of > 700 μg m−3 PM2.5 and carbon monoxide with values of up to 10 mg m−3 several days in a row. 9 out of 10 most polluted cities were located

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.