Abstract
Air quality is a vital concern globally, and Sri Lanka, according to WHO statistics, faces challenges in achieving optimal air quality levels. To address this, we introduced an innovative IoT-based Air Pollution Monitoring (APM) Box. This solution incorporates readily available Commercial Off-The-Shelf (COTS) sensors, specifically MQ-7 and MQ-131, for measuring concentrations of Carbon Monoxide (CO) and Ozone (O3) ,Arduino and "ThingSpeak" platform. Yet, those COTS sensors are not factory-calibrated. Therefore, we implemented machine learning algorithms, including linear regression and deep neural network models, to enhance the accuracy of CO and O3 concentration measurements from these non-calibrated sensors. Our findings indicate promising correlations when dealing with MQ-7 and MQ-131 measurements after removing outliers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.