This paper adds a novel perspective to the literature by exploring the predictive performance of two relatively unexplored indicators of financial conditions, i.e. financial turbulence and systemic risk, over stock market volatility using a sample of seven emerging and advanced economies. The two financial indicators that we utilize in our predictive setting provide a unique perspective on market conditions, as they relate directly to portfolio performance metrics from both volatility and co-movement perspectives and, unlike other macro-financial indicators of uncertainty, or risk, can be integrated into diversification models within forecasting and portfolio design settings. Since the data for the two predictors are available at a weekly frequency, and our focus is to produce forecasts at the daily frequency, we use the generalized autoregressive conditional heteroskedasticity-mixed data sampling (GARCH-MIDAS) approach. The results suggest that incorporating the two financial indicators (singly and jointly) indeed improves the out-of-sample predictive performance of stock market volatility models over both the short and long horizons. We observe that the financial turbulence indicator that captures asset price deviations from historical patterns does a better job when it comes to the out-of-sample prediction of future returns compared with the measure of systemic risk, captured by the absorption ratio. The outperformance of the financial turbulence indicator implies that unusual deviations in not only asset returns, but also in correlation patterns play a role in the persistence of return volatility. Overall, the findings provide an interesting opening for portfolio design purposes, in that financial indicators, which are directly associated with portfolio diversification performance metrics, can also be utilized for forecasting purposes, with significant implications for dynamic portfolio allocation strategies.