Abstract
In this paper we show how to obtain estimates of CoVaR based on models that take into consideration some stylized facts about multivariate financial time series of equity log returns: heavy tails, negative skew, asymmetric dependence, and volatility clustering. While the volatility clustering effect is captured by AR-GARCH dynamics of the Glosten-Jagannathan-Runkle (GJR) type, the other stylized facts are explained by non-Gaussian multivariate models and copula functions. We compare the different models in the period from January 2007 to March 2020. Our empirical study conducted on a sample of listed banks in the euro area confirms that, in measuring CoVaR, it is important to capture the time-varying dynamics of the volatility. Additionally, a correct assessment of the heaviness of the tails and of the dependence structure is needed in the evaluation of this systemic risk measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.