Theoretically, based on a waveguide model, the expression of the tangential stress is formulated for steady, two-dimensional incompressible fluid flow over a flat plate in turbulent boundary layer. It is dependent on some factors, one of them, the behaviour of the last damping mode eigenvalues, and eigenfunctions, that are deduced from solution Orr-Sommerfeld equation by spectral Chebyshev collocation Method. Verification of the latter method is investigated by comparison the deduced formula of turbulent tangential stress with experimental data. In addition to, weight factors in this expression are connected to define the condition of dynamical system solution for multiple 3-wave resonance. This system is solved numerically, and the dynamic invariant is normalized to obtain the time average of the square modulus harmonic, and sub harmonics amplitudes by theorem Birkhoff-Khinchin. Comparison is made between the time-averaged and the phase average for the square modulus of harmonic, and sub harmonic amplitudes that defined on the unit sphere, in the state of multiple 3-wave resonance.
Read full abstract