Abstract
Abstract In this study, the mixing quality of high-viscosity yield stress fluid (Carbopol aqueous solution) under laminar and turbulent flow regimes was evaluated through a numerical experimental study. A three-dimensional computational fluid dynamics large-eddy simulation (CFD-LES) model was employed to capture large-scale vortex structures. The proposed CFD model was validated by the experimental data in terms of mean velocity profiles and velocity-time history. Thereafter, the CFD model was applied to simulate the residence time distribution using the tracking technique: tracer pulse method and step method. In addition, the non-ideal flow phenomena caused by molecular diffusion and eddy diffusion were evaluated. The effects of the rheological properties on the mixing performance were also investigated. The presented results can provide useful guidance to enhance mass transfer in reactors with high-viscosity fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.