Abstract
To simulate the non-uniform frost growth in flow direction for humid air flowing through a freezing channel, a 2D numerical frosting model based on dynamic meshes technique is developed in the current work via the secondary development of commercial ANSYS Fluent. The computation domain consists of both frost layer and humid air regions, and the local heat and vapor fluxes at the surface of frost layer are determined by numerical temperature and vapor fraction fields in the humid air region rather than by empirical correlations. The frost layer is treated as a growing packed bed with heat and mass transfer dominated by molecular diffusion, where local absorption coefficient of vapor desublimation and local vapor fraction are both determined by solving the pseudo steady vapor diffusion equation with a source term theoretically. The interface of frost layer and humid air regions is treated as two walls for the iteration of its temperature, of which the humid air side is specified with the temperature equal to the frost-side counterpart and the frost side takes the heat flux including the extra latent heat caused by vapor deposit. User-defined functions are compiled to implement the above treatments to ANSYS Fluent. Frosting experiments in the literature are simulated with the current model for validation. How the profile of frost layer evolves with time in the frosting process is explored. The contours and profiles of velocity, temperature and vapor fraction are presented to discuss the effects of heat and mass transfer on frost formation. Numerical results demonstrate that the proposed CFD model can predict the frost growth and densification with a relative deviation less than 5% compared with experiments. Besides, the computation load of current model is small due to no solution of complex multiphase flow. In addition, dynamic meshes help current model to capture the interface of frost layer and humid air regions accurately.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have