Water supply infrastructure operational efficiency has a direct impact on the quantity of portable water available to end users. It is commonplace to find water supply infrastructure in a declining operational state in rural and some urban centers in developing countries. Maintenance issues result in unabated wastage and shortage of supply to users. This work proposes a cost-effective solution to the problem of water distribution losses using a Microcontroller-based digital control method and Machine Learning (ML) to forecast and manage portable water production and system maintenance. A fundamental concept of hydrostatic pressure equilibrium was used for the detection and control of leakages from pipeline segments. The results obtained from the analysis of collated data show a linear direct relationship between water distribution loss and production quantity; an inverse relationship between Mean Time Between Failure (MTBF) and yearly failure rates, which are the key problem factors affecting water supply efficiency and availability. Results from the prototype system test show water supply efficiency of 99% as distribution loss was reduced to 1% due to Line Control Unit (LCU) installed on the prototype pipeline. Hydrostatic pressure equilibrium being used as the logic criteria for leak detection and control indeed proved potent for significant efficiency improvement in the water supply infrastructure.
Read full abstract