In this current study, a new class of multifunctional biobased ecofriendly nanosorbents namely crystalline nanocellulose-activated char (CNC-AC) nanosorbents were fabricated by employing a much more innovative and beneficial solvent evaporation induced phase separation (EIPS) technique. While the crystalline nanocellulose (CNC) were extracted from a very much new, innovative, and beneficial agrowaste source namely banana tree (M. oranta) rachis fibers by conducting a series of chemical treatments like scouring, alkali treatment, bleaching, and acid hydrolysis reactions. Additionally, the biochar were synthesized from the residual mass of Magnolia champaca L. barks after methanol extraction and functionalized by 30 % H3PO4 to improve their overall properties. Besides these the fixed-bed continuous column adsorption study were carried out by optimizing the various influential factors such as preliminary concentration and flow rates of the inlet wastewater solution, along with the nanosorbent bed heights into the applied column. For better understanding the overall physicochemical, thermomechanical, and morphostructural behavior of the newly fabricated polyfunctional CNC-AC bionanosorbents the samples were characterized by conducting FTIR-ATR, FESEM, BET, XRD, TGA analysis. Meanwhile the treated and nontreated water specimens were examined by conducting AAS and UV–vis-NIR techniques. The obtained results recommended that the newly produced CNC-AC nanosorbents have contained a quite number of active edges/binding sites along with substantial sp. surface area (around 316.95 m2/g). Additionally, they possessed a crystallinity index about 59.98 ± 0.027 %, greater thermal steadiness up to 600 °C, and outstanding 2D honeycomb-like mesoporous peripheral surface microstructure with a promising spherical shapes and smaller size nearly 5–10 nm. The highest removal capacity were found at 538.91 mg/g and 455.70 mg/g for Pb2+ and CR respectively. Additionally, for better understanding the experimental breakthrough curves (BTC) were evaluated by several well established column models while the maximum R2 value was found around 0.999 for the Thomas model and reduced chi squire (χ2) value was around 0.0001.