Previous article Next article Maximum Probability Estimators in the Classical Case and in the “Almost Smooth” CaseJ. WolfowitzJ. Wolfowitzhttps://doi.org/10.1137/1120039PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] I. A. Ibragimov and , R. Z. Khas'minskii, Asymptotic behavior of statistical estimators in the smooth case, Theory Prob. Applications, 17 (1972), 445–462 10.1137/1117054 0273.62019 LinkGoogle Scholar[2] L. Weiss and , J. Wolfowitz, Maximum probability estimators, Ann. Inst. Statist. Math., 19 (1967), 193–206 MR0232488 0183.21203 CrossrefGoogle Scholar[3] Lionel Weiss and , Jacob Wolfowitz, Maximum probability estimators and related topics, Springer-Verlag, Berlin, 1974v+106, Lecture Notes in Mathematics, Vol. 424 MR0359152 0297.62015 Google Scholar[4] L. Weiss and , J. Wolfowitz, Maximum probability estimators and asymptotic sufficiency, Ann. Inst. Statist. Math., 22 (1970), 225–244 MR0278345 0218.62035 CrossrefGoogle Scholar[5] Lionel Weiss and , J. Wolfowitz, Maximum probability estimators with a general loss functionProbability and Information Theory (Proc. Internat. Sympos., McMaster Univ., Hamilton, Ont., 1968), Springer, Berlin, 1969, 232–256, Lecture Notes in Mathematics, Vol. 89, Heidelberg–New York MR0269014 0188.49901 CrossrefGoogle Scholar[6] Harald Cramér, Mathematical Methods of Statistics, Princeton Mathematical Series, vol. 9, Princeton University Press, Princeton, N. J., 1946xvi+575 MR0016588 0063.01014 Google Scholar[7] Michel Loève, Probability theory, Third edition, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963xvi+685 MR0203748 0108.14202 Google Scholar[8] I. A. Ibragimov and , R. Z. Khas'minskii, Asymptotic analysis of statistical estimates for the “almost smooth” case, Theory Prob. Applications, 18 (1973), 241–252 10.1137/1118027 0295.62027 LinkGoogle Scholar[9] Michael Woodroofe, Maximum likelihood estimation of a translation parameter of a truncated distribution, Ann. Math. Statist., 43 (1972), 113–122 MR0298817 0251.62018 CrossrefGoogle Scholar[10] L. Weiss and , J. Wolfowitz, Maximum likelihood estimation of a translation parameter of a truncated distribution, Ann. Statist., 1 (1973), 944–947 MR0341727 0271.62043 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Volume 20, Issue 2| 1976Theory of Probability & Its Applications History Submitted:30 May 1974Published online:17 July 2006 InformationCopyright © 1976 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1120039Article page range:pp. 363-371ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics
Read full abstract