In comparison to other Renewable Energy (RE) resources, solar energy has become the most prominent and prospective source for generating electricity, substituting conventional sources. However, solar Photovoltaic (PV) energy production is dependent on solar irradiance and cell temperature. By implementing the Maximum Power Point Tracking (MPPT) algorithm, it is achievable to maximize the power from solar PV. In spite of this, there is still a slower convergence rate, a significant fluctuation around Maximum Power Point (MPP), and a drift issue caused by rapid irradiance variations in solar PV. In order to prevent oscillation and attain a steady state and continuous output of the PV module, a Fuzzy Logic (FL)-based MPPT has been designed in this work. With the buck converter as the DC-DC converter and the lead acid battery as the input, the Perturb & Observe (P&O) MPPT method is selected. The overall design will be developed using Matlab Simulink, and the efficiency of the FL-MPPT charge controller will be evaluated under constant and step irradiance. Additionally, the battery's State of Charge (SOC) will be monitored to prevent overcharging and discharge. In addition, the effectiveness of the controller will be evaluated with and without the MPPT method. On the basis of simulation results obtained from constant and step irradiance levels, the FL-MPPT charge controller with the P&O algorithm and the lead acid battery as the load was able to maintain maximum system efficiency while extending battery life. The FL-MPPT charge controller obtained about 96% efficiency for both irradiance profiles, whereas the system without the FL-MPPT algorithm only achieved 42% efficiency.