Abstract

One of the most significant renewable energies is photovoltaic (PV) energy, however it has a low efficiency due to its variable maximum power point that depends on weather conditions. In order to guarantee the system's best performance, intelligent algorithms can effectively track this point in real-time utilizing the maximum power point tracking (MPPT) method. Consequently, it is crucial to maximize the use of the solar energy that has been captured as well as the PV system's generated electricity. Variations in solar irradiance affects the amount of electric energy obtained from solar arrays. For efficient extraction of electricity from solar PV systems, MPPT algorithms are required. Sliding mode control (SMC) can be used in the control of nonlinear systems. However, the effectiveness of SMC can be improved by the choice of the sliding coefficients. In this paper, optimal search using particle swarm optimization (PSO) is used in the design of the sliding manifold. Results obtained via simulations showed that MPPT tracking efficiencies obtained for the PSO based SMC and the conventional SMC are 99.65% and 96.79% respectively. That means, PSO based SMC is 2.86% better than conventional SMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.