Carbonaceous thermal energy storage involving PCMs has gained an increasing research interest owing to their higher thermal conductivity and energy storage density. The current work analyses the thermophysical properties of a nano-enhanced eutectic phase change material (NeUPCM) laden with different concentrations (ranges from 0 wt% - 0.7 wt%) of multi-wall carbon nanotube (MWCNT). Paraffin wax-palmitic acid (PW-PA) binary eutectic was produced initially by facile melt blending, and then MWCNTs were doped via standard two-step nanocomposite synthesis protocol. Nanocomposites showed a slower decomposition rate, and the thermal resistance index improved. MWCNT enhance the thermal conductivity of the eutectic base (140 %), which reaches a maximum value of 0.619 W/(m·K) for 0.5 wt% loadings, and the maximum increment of 13.2 % of latent heat was noted for 0.7 wt% loading of MWCNT (which is having a melting temperature of 53 °C). The sample doped with 0.5 wt% MWCNT(C3) showed the highest thermal effusivity. The NeUPCMs also displayed improved photothermal performance and solar absorptivity. Corrosion analysis against copper revealed that the composite is suitable for long-term usage. The NeUPCMs maintained good reliability even after 500 melt-freeze cycles. In short, the proposed NeUPCMs hold significant potential to be employed for thermal energy storage purposes.