In the present study, an efficient in vitro propagation protocol has been developed from clove explants of Allium sativum L., one of the oldest vegetable and medicinal plant used worldwide. Garlic is propagated vegetatively as cross-fertilization is strictly precluded due to sterile flowers. Due to a low rate of multiplication, limited genetic improvement possibility and increased germplasm degradation, plant tissue culture becomes an efficient and preferred tool for quality and rapid propagation of garlic. Here, the clove explants were cultured on Murashige and Skoog basal medium amended with different concentrations of Plant Growth Regulators (PGRs) namely 2,4-dichlorophenoxy acetic acid (2,4-D), 6-benzyl amino purine (BAP), and 1-naphthalene acetic acid (NAA). Within 2weeks of inoculation, white compact callus was formed, maximum callus induction frequency (85.99%) was on 1.5mgl-1 2, 4-D added MS medium. Induced callus transformed into an embryogenic callus on 2, 4-D and BAP amended MS medium with highest embryogenic frequency (77.7%) was noted on 0.25mgl-1 2, 4-D and 1.0mgl-1 BAP added medium. Embryogenic callus differentiated into progressive stages of somatic embryos starting from globular, scutellar, and finally to coleoptilar stage of the embryo. Histological and scanning electron microscopic study of embryogenic callus was conducted, showing different stages of embryos, their origin and development, re-confirming somatic embryogenesis incidence in A. sativum. Green and mature somatic embryos were germinated and converted into plantlets on 0.5mgl-1 BAP amended MS medium. The in vitro regenerated plants were cultured separately in IBA and NAA supplemented media for root induction. The MS medium amended with 1.0mgl-1 IBA proved to be the best PGR treatment in inducing roots. The rooted plants were acclimatized and transferred ex vitro with about 87% survival rate. Cytological and flow cytometric analyses were performed to assess the genetic stability of in vitro regenerated plants. Cytological studies of in vitro regenerated plants showed 2n = 16 chromosome number and did not reveal any numerical variation in chromosomes. Flow cytometry was employed to measure the 2C DNA content of somatic embryo regenerated A. sativum plants and compared with in vivo grown garlic. The histogram peaks of relative 2C DNA content of in vitro regenerated plantlets were similar to the corresponding 2C DNA peak of in vivo grown plants. Flow cytometric 2C DNA content of embryo regenerated and field-grown A. sativum plants were the same, i.e., 33.45pg and 33.56pg, respectively, confirming genetic similarity. In conclusion, the present cytological and flow cytometric study suggest that the in vitro culture conditions are quite safe, did not encourage genetic alterations, and regenerants were "true to type."
Read full abstract