Intelligent reflecting surface (IRS) and unmanned aerial vehicle (UAV) have been recently used in wireless-powered mobile edge computing (MEC) systems to enhance the computation bits and energy harvesting performance. However, in the conventional IRS- and UAV-aided MEC systems, the IRS is installed at fixed locations on a building, which restricts the computation performance. UAV-mounted IRS (UAV-IRS), as a promising technology, combines the advantages of UAV and IRS. Hence, in this work, we study a UAV-IRS wireless-powered MEC system, where multiple UAV-IRSs are considered between Internet of Things (IoT) devices and the base station to improve the computation bits and energy harvesting. The multi-antenna base station first charges the IoT devices via radio frequency signals, and then IoT devices offload their computation tasks to the base station via UAV-IRSs. We formulate a computation bits maximization problem for all IoT devices by jointly determining detection beamforming at IoT devices, active energy beamforming at the base station, power allocation, time slot assignment, CPU frequency, the phase shifts design in the wireless energy transfer (WET) and task offloading, and UAV-IRSs positions. A block coordinate descent (BCD) algorithm by decomposing the introduced problem into four blocks is proposed, while the detection beamforming, active energy beamforming, transmit power, time slot assignment, CPU frequency, and the phase shifts design in the task offloading are derived in closed-form results. Also, the successive convex approximation and semidefinite relaxation (SDR) are adopted to obtain the UAV-IRS positions and the phase shifts in the WET, respectively. The simulation results verify the effectiveness of the presented BCD method compared with the different benchmark schemes.