The expression and function of Fc gamma RII and Fc gamma RIII on three mouse mast cell populations that differ in maturity as assessed by secretory granule constituents were analyzed by cellular and immunochemical approaches. As quantified by flow cytometric analysis of the binding of the rat 2.4G2 anti-Fc gamma RII/III mAb, mouse serosal mast cells (SMC) purified from the peritoneal cavity expressed more receptors per cell than did mouse IL-3-dependent, bone marrow culture-derived mast cells (BMMC), which are progenitors of SMC. Coculture of BMMC with mouse 3T3 fibroblasts for 2 wk, which alters the secretory granule composition toward that of SMC, also increased receptor epitope expression to a level equivalent to that of SMC. As assessed by rosette assays with mouse mAb to SRBC, all three mast cell populations bound IgG1, IgG2a, and IgG2b, essentially all binding was inhibited by 2.4G2 antibody, and greater quantities of the antibody were required to block immune adherence by cocultured mast cells and SMC as compared with BMMC. Immunoprecipitation and SDS-PAGE analysis of Fc gamma RII and Fc gamma RIII from BMMC, cocultured mast cells, and SMC that were surface radiolabeled with Na125I revealed predominant native forms of 62, 57, and 56 kDa, respectively, and an additional surface form of 43 kDa in SMC. Removal of N-linked carbohydrate from immunoprecipitates demonstrated that BMMC expressed peptide cores of 38 kDa (Fc gamma RII-1 gene product) and 31 kDa (Fc gamma RII-2 gene product), and barely detectable amounts of a 28-kDa (Fc gamma RIII gene product) core. The expression of all three was increased by coculture with 3T3 fibroblasts, consistent with the increased expression of their common epitope by cytofluorographic analysis. SMC expressed primarily the Fc gamma RII-1 and some Fc gamma RIII gene product. Thus, the three populations of mast cells express different amounts and ratios of the Fc gamma RII and Fc gamma RIII gene products, and maturation of BMMC during coculture with fibroblasts in vitro and in the peritoneal cavity in vivo augments cell-surface expression of the receptors and immune adherence function.
Read full abstract