Osteoarthritis (OA) is a joint disease linked with pathologic cartilage calcification, caused by the deposition of calcium-containing crystals by chondrocytes. Despite its clinical significance, the precise mechanisms driving calcification remain elusive. This study aimed to identify crucial players in cartilage calcification, offering insights for future targeted interventions against OA. Primary murine chondrocytes were stimulated with secondary calciprotein particles (CPP2) or left untreated (NT) for 6 h. Calcification was assessed by alizarin red staining. RNA was analyzed by Bulk RNA sequencing. Differentially expressed (DE) genes were identified (cutoff: abs(LogFC)>1 and adj.p-val < 0.05), and top 50 DE genes were cross-referenced with human OA datasets from previous studies (ie healthy vs OA cartilage, or undamaged vs damaged cartilage). RNA from NT and CPP2-stimulated primary human OA chondrocytes were used to validate genes by qPCR. CPP2 induced crystal formation by chondrocytes and significantly modulated 1466 genes. Out of the top 50 DE genes in CPP2, 27 were confirmed in published OA cartilage datasets. Of those genes, some are described in calcification and/or OA (Errfi1, Ngf, Inhba, Col9a1). Two additional ones (Rcan1, Tnfrsf12a) appear novel and interesting in the context of calcification and OA. We validated modulation of these six genes in calcifying human chondrocytes from 5 patients. Ultimately, we unveiled two distinct gene families modulated by CPP2: the first comprised cytoskeletal genes (Actb, Tpm1, Cfl1, Tagln2, Lmna), while the second encompassed extracellular matrix genes (Fmod, Sparc, Col9a1, Cnmd). CPP2 modulates genes in chondrocytes that could represent new targets for therapeutic interventions in OA.